2008/09/15

Simple Exercise

Prove that fº . R . f is an equivalence relation if R is. (f is, by convention, a total function.)

Proof. (i) Reflexivity:

id  ⊆  fº . f  ⊆  fº . id . f  ⊆  fº . R . f
(ii) Transitivity:
fº . R . f . fº . R . f  ⊆  fº . R . R . f  ⊆  fº . R . f
(iii) Symmetry:
(fº . R . f)º  =  fº . Rº . f  =  fº . R . f

Example: take f = signum and R the usual equality on real numbers.

--
I certainly like the way AoP treats relations. So concise!

Labels:

<< 回到主頁