Simple Exercise
Prove that fº . R . f
is an equivalence relation if R
is. (f
is, by convention, a total function.)
Proof. (i) Reflexivity:
id ⊆ fº . f ⊆ fº . id . f ⊆ fº . R . f(ii) Transitivity:
fº . R . f . fº . R . f ⊆ fº . R . R . f ⊆ fº . R . f(iii) Symmetry:
(fº . R . f)º = fº . Rº . f = fº . R . f□
Example: take f = signum
and R
the usual equality on real numbers.
--
I certainly like the way AoP treats relations. So concise!
Labels: Mathematics
<< 回到主頁